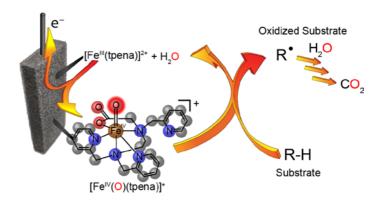


Biomimetic ligands for oxidative degradation

take inspiration from natural biological enzyme motifs to generate ligands that are both oxidatively robust and capable of stabilizing highly oxidizing high-valent metal species. The oxidizing form can be catalytically generated from the resting state in many ways and employed to degrade a broad variety of contaminants.

More information


Professor David Waite, NAE

Executive Director and CEO, UNSW Centre for Transformational Environmental Technologies (CTET)

T: +61 (0) 2 9385 5060 E: d.waite@unsw.edu.au

Development and use of immobilized biomimetic ligands for oxidative degradation of contaminants

UNSW Water Research Centre, School of Civil and Environmental Engineering

Competitive advantage

- Oxidation of non-biodegradable and toxic organics such as aromatics, pesticides, and volatile organic compounds;
- Selective oxidant, which is strong enough to achieve full mineralization to CO₂:
- Versatile activation of high-valent oxidant by either electrochemical methods or by addition of a chemical oxidant;
- Ligand is stable to high-valent oxidation state allowing complex to be reused catalytically many times;
- Oxidizing capacity of high-valent state effective over broad pH window, from strongly acidic to alkaline pH.

Recent research projects

- Demonstration of electrochemical activation of the [Fe^{IV}(O)(tpena)]⁺
 oxidant, and characterization of its reactivity as a function of pH towards a
 wide variety of substrates;
- Demonstration and mechanistic study of formation of [Fe^{IV}(O)(tpena)]⁺ and HO* oxidants during H₂O₂ activation;
- Demonstration of HCIO actication of [Fe^{IV}(O)(tpena)]⁺ oxidant.

Successful applications

- · Degradation of dye contaminants using all activation methods
- Demonstration of complete mineralisation by all activation methods by oxidation of formic acid to CO₂

Our experts

Professor David Waite, NAE
 Executive Director/CEO, CTET

